

PLANNING AND BUILDING CONTROL; CALCULATIONS & DRAWINGS

Office:

103-105 Bradford Road

Huddersfield, HD1 6DZ

Office:

01484 941051

Web: Email: www.huddsdesign.com

eng@huddsdesign.com

STRUCTURAL CALCULATIONS

FOR

69 WASHINGTON RD, GOLDTHORPE, ROTHERHAM S63 9EE.

Design Summary: (See Sheet A1)

Notes:

- All dimensions and Beam Lengths to be confirmed and checked by builder on site prior to works commencing and materials being ordered
- All steel to be minimum grade S275 (UNO)
- All Timber / Timber Packing to be minimum grade C16 (UNO)
- Minimum end bearing for steel to be 100mm (UNO)
- Minimum end bearing for timber to be 100mm
- Minimum end bearing for lintels to be 150mm
- All Beams to have minimum fire protection of 30 minutes or as required by building regulations
- All new masonry blockwork to be minimum 7.3 N/mm² strength
- All returns and loadbearing walls as shown on Architects drawings and mark ups
- All temporary support works to builder/contractor's specification
- Hudds Design has not been appointed as CDM coordinator and is the responsibility of the builder.

ISSUED FOR BUILDING CONTROL APPROVAL: <u>HUDDS DESIGN</u>

25th January 2021 Ref: HD-S21-0118

PLANNING AND BUILDING CONTROL; CALCULATIONS & DRAWINGS

SHEET A1

Refer to sketch mark ups for references Refer to Architects drawings for dimensions

DESIGN SUMMARY

'Rafters RR' 50x150 Deep Timber Rafters @400mm Ctrs

Min Grade C24

Double Up Rafters around Roof Light Openings

'Purlin P1' 100x275mm Deep Timber

Min Grade C24

Provide Beam B1 from solid walls as support below with pillar.

'Hip Rafter H1' 75x250mm Deep Timber

Min Grade C24

'Beam B1' 152x152x23 UC

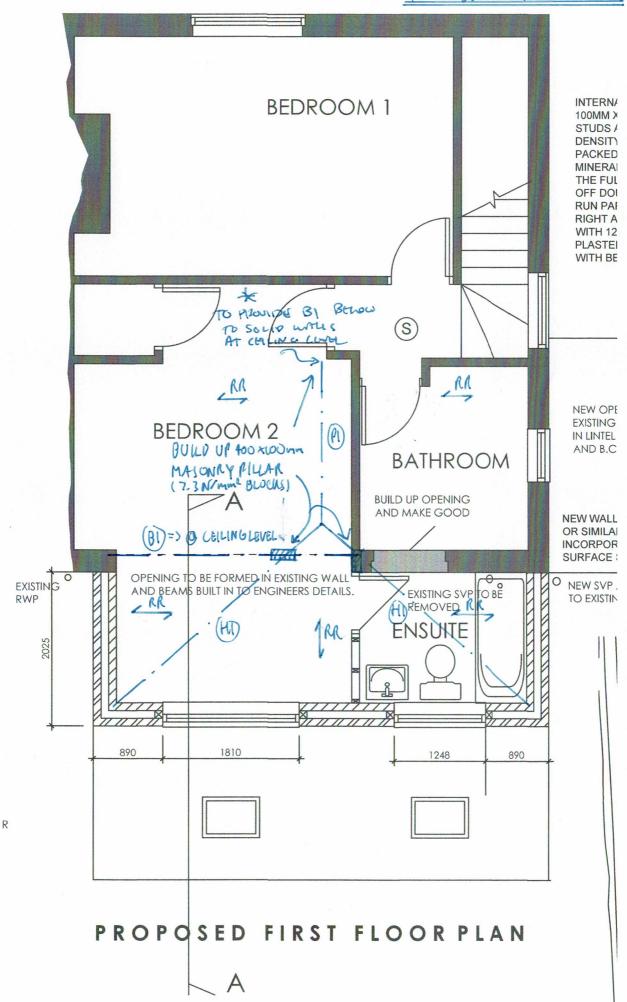
200x100x215mm Deep Concrete Padstones

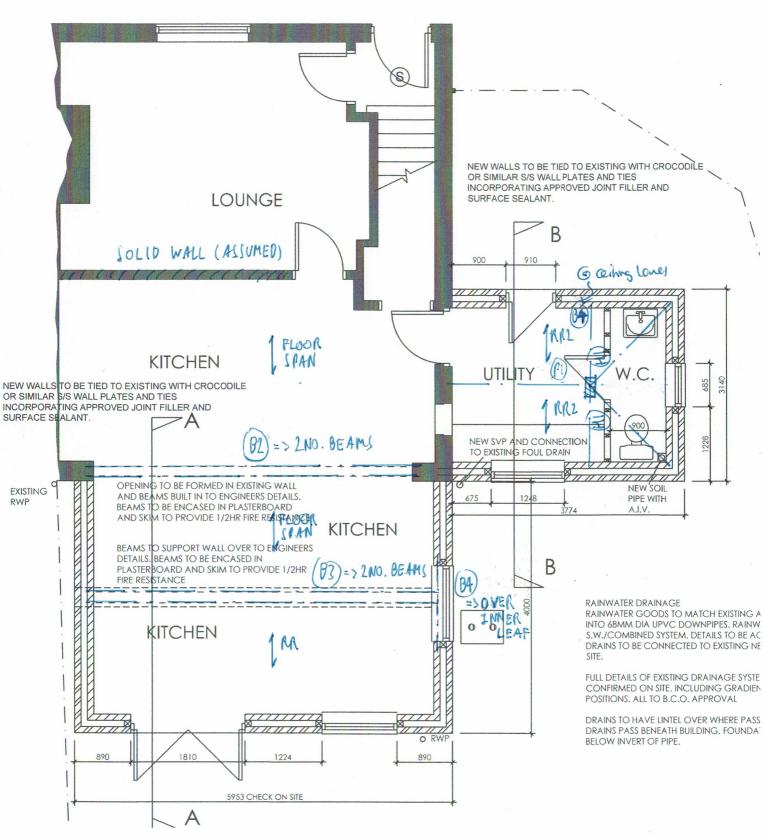
'Beam B2' 2 No. 254x146x37 UB's

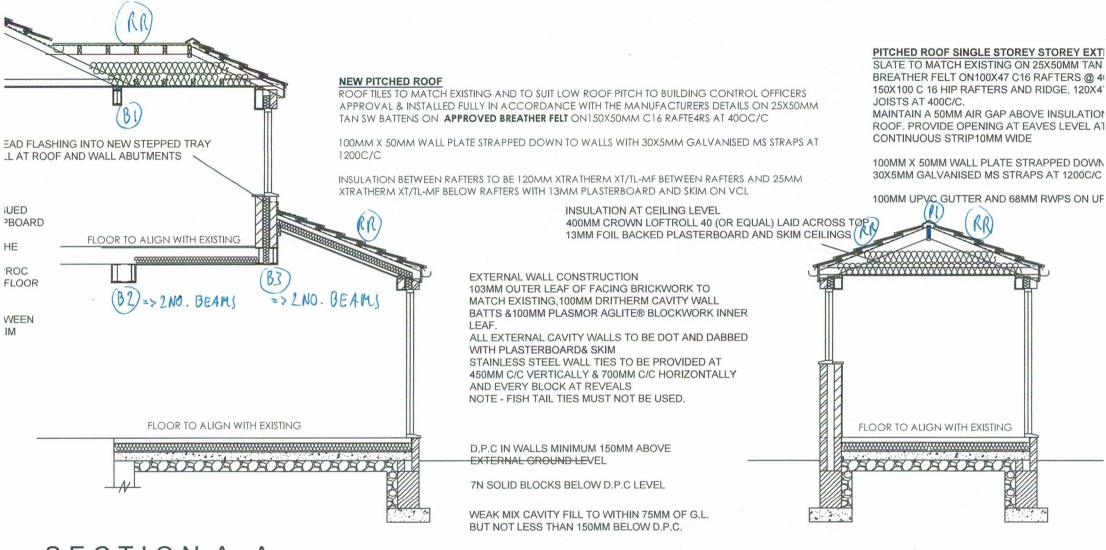
300x300x215mm Deep Concrete Padstones

'Beam B3' 2 No. 254x146x43 UB's

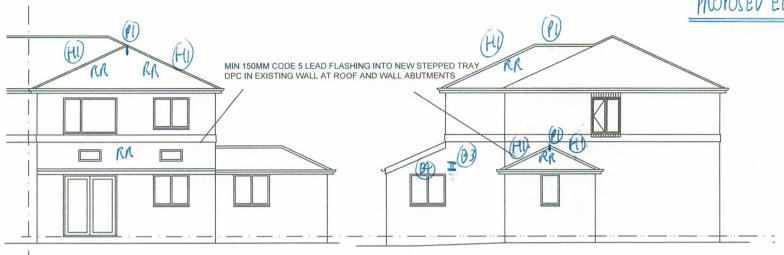
400x100x215mm Deep Concrete Padstones


'Beam B4 152x89x16 UB


200x100x215mm Deep Concrete Padstones



PROPOSED GROUND FLOOR PLAN



SUB-STRUCTURE

SECTION A-A

MINIMUM 200 X 600MM CONCRETE STRIP FOOTINGS, MINIMUM 900MM FROM LOWER GROUND LEVEL TO UNDER SIDE OF CONCRETE (ALL SUBJECT TO BUILDING CONTROL OFFICERS APPROVAL) SECTION B-B

MO-SZI-OUR (AS)
PROPOSED ELEVATIONS (NTS)

PROPOSED REAR ELEVATION

FRONT ELEVATION

PROPOSED SIDE ELEVATION

SIDEELEVATION

FIRST FLOOR CON AND GROOVED MI FIXED WITH APPR SCREWED DOWN PERIMETER AND S INTERMEDIATE SL DRYWALL TIMBER JOISTS @ 400C/C

100MM ROCKWOC JOISTS AND 13MN CEILING

GROUND FLOOR C 75MM SCREED ON (VCL) ON 125MM P 2000 G VISQUEEN I DPC IN WALLS ON FLOOR SLAB WITH S MESH ON 150MM W AND BLINDED LIME

PLANNING AND BUILDING CONTROL; CALCULATIONS & DRAWINGS

STRUCTURAL CALCULATIONS

Address: 69 Washington Rd, Goldthorpe, Rotherham S63 9EE.

Calculations for:

Side and Rear Extension.

DESIGN LOADINGS

Walls

Inner Skin \rightarrow 0.1 x 20 kN/m³ = 2.0 kN/m² – (**Block**)

Outer Skin \rightarrow 0.1 x 20 kN/m³ = 2.0 kN/m² – (Brick)

 $\frac{\text{Total}}{\text{Total}} = 4.0 \text{ kN/m}^2$

Roof - (Tiles)

Dead Loads = 1.3 kN/m^2

Imposed Loads = 0.8 kN/m^2

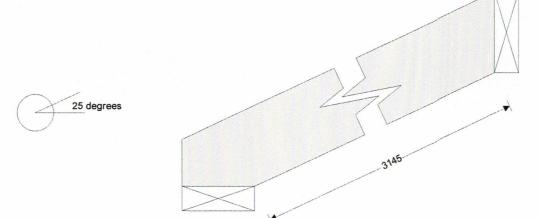
Total = 2.1 kN/m^2

Floor - (Timber)

Dead Loads = 1.0 kN/m^2

Imposed Loads = 1.5 kN/m^2

Total = 2.5 kN/m^2



Structural Engineering Consultants
Hudds Design
103-105 Bradford Rd
Huddersfield
HD1 6DZ

Project Job no. 69 Washington Rd, Goldthorpe, Rotherham S63 9EE HD-S21-0118					
Calcs for Roof Rafter RR				Start page no./Revision RR - 1	
Calcs by JT	Calcs date 25/01/2021	Checked by JA	Checked date 25/01/2021	Approved by	Approved date

TIMBER RAFTER DESIGN (BS5268-2:2002)

TEDDS calculation version 1.0.03

Rafter details

Breadth of timber sections b = 50 mm Depth of timber sections h = 150 mm Rafter spacing s = 400 mm Rafter span Rafter span Single span Clear length of span on slope $L_{cl} = 3145 \text{ mm}$ Rafter slope $\alpha = 25.0 \text{ deg}$

Timber strength class C46 CZ4 (USE)

Section properties

Cross sectional area of rafter $A = 7500 \text{ mm}^2$ Section modulus $Z = 187500 \text{ mm}^3$ Radius of gyration r = 43 mm Second moment of area $I = 14062500 \text{ mm}^4$

Loading details

Rafter self weight $F_j = 0.02 \text{ kN/m}$ Dead load on slope $F_d = 1.18 \text{ kN/m}^2$ Imposed snow load on plan $F_u = 0.80 \text{ kN/m}^2$ Imposed point load $F_p = 0.90 \text{ kN}$

Modification factors

Section depth factor $K_7 = 1.08$ Load sharing factor $K_8 = 1.10$

Consider long term load condition

Load duration factor $K_3 = 1.00$ Total UDL perp. to rafter F = 0.448 kN/m Notional bearing length $L_b = 6$ mm Effective span $L_{eff} = 3150$ mm

Check bending stress

Permissible bending stress $\sigma_{m_adm} = 6.292 \text{ N/mm}^2$ Applied bending stress $\sigma_{m_max} = 2.967 \text{ N/mm}^2$

PASS - Applied bending stress within permissible limits

Check compressive stress parallel to grain

Permissible comp. stress $\sigma_{c_adm} = 4.212 \text{ N/mm}^2$ Applied compressive stress $\sigma_{c_max} = 0.334 \text{ N/mm}^2$

PASS - Applied compressive stress within permissible limits

Check combined bending and compressive stress parallel to grain

Combined loading check 0.563 < 1

PASS - Combined compressive and bending stresses are within permissible limits

Check shear stress

Permissible shear stress $\tau_{adm} = 0.737 \text{ N/mm}^2$ Applied shear stress $\tau_{max} = 0.141 \text{ N/mm}^2$

PASS - Applied shear stress within permissible limits

Hudds Design Structural Engineering Consultants

Hudds Design 103-105 Bradford Rd Huddersfield HD1 6DZ

Project 69 Was	shington Rd, Goldtl	Job no. HD-S21-0118			
Calcs for	Roof R	after RR		Start page no./I	Revision R - 2
Calcs by JT	Calcs date 25/01/2021	Checked by JA	Checked date 25/01/2021	Approved by	Approved date

Check deflection

Permissible deflection $\delta_{adm} = 9.451 \text{ mm}$ Total deflection $\delta_{max} = 4.810 \text{ mm}$

PASS - Total deflection within permissible limits

Consider medium term load condition

Load duration factor $K_3 = 1.25$ Total UDL perp. to rafter F = 0.711 kN/mNotional bearing length $L_b = 9 \text{ mm}$ Effective span $L_{eff} = 3154 \text{ mm}$

Check bending stress

Permissible bending stress $\sigma_{m_aadm} = 7.865 \text{ N/mm}^2$ Applied bending stress $\sigma_{m_max} = 4.717 \text{ N/mm}^2$

PASS - Applied bending stress within permissible limits

Check compressive stress parallel to grain

Permissible comp. stress $\sigma_{c_adm} = 4.831 \text{ N/mm}^2$ Applied compressive stress $\sigma_{c_max} = 0.530 \text{ N/mm}^2$

PASS - Applied compressive stress within permissible limits

Check combined bending and compressive stress parallel to grain

Combined loading check 0.733 < 1

PASS - Combined compressive and bending stresses are within permissible limits

Check shear stress

Permissible shear stress $\tau_{adm} = 0.921 \text{ N/mm}^2$ Applied shear stress $\tau_{max} = 0.224 \text{ N/mm}^2$

PASS - Applied shear stress within permissible limits

Check deflection

Permissible deflection δ_{adm} = **9.462** mm Total deflection δ_{max} = **7.663** mm

PASS - Total deflection within permissible limits

Consider short term load condition

Load duration factor $K_3 = 1.50$ Total UDL perp. to rafter F = 0.448 kN/m Notional bearing length $L_b = 9$ mm Effective span $L_{eff} = 3154$ mm

Check bending stress

Permissible bending stress $\sigma_{m \text{ adm}} = 9.438 \text{ N/mm}^2$ Applied bending stress $\sigma_{m \text{ max}} = 6.404 \text{ N/mm}^2$

PASS - Applied bending stress within permissible limits

Check compressive stress parallel to grain

Permissible comp. stress $\sigma_{c_adm} = 5.317 \text{ N/mm}^2$ Applied compressive stress $\sigma_{c_max} = 0.385 \text{ N/mm}^2$

PASS - Applied compressive stress within permissible limits

Check combined bending and compressive stress parallel to grain

Combined loading check 0.769 < 1

PASS - Combined compressive and bending stresses are within permissible limits

Check shear stress

Permissible shear stress $\tau_{adm} = 1.106 \text{ N/mm}^2$ Applied shear stress $\tau_{max} = 0.305 \text{ N/mm}^2$

PASS - Applied shear stress within permissible limits

Check deflection

Permissible deflection δ_{adm} = 9.462 mm Total deflection δ_{max} = 9.326 mm

PASS - Total deflection within permissible limits

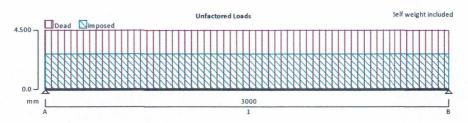
Structural Engineering Consultants www.huddsdesign.com

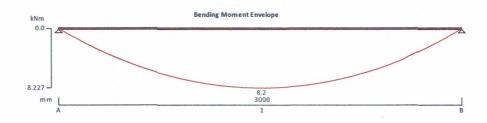
Project: 69 WASHING ON OV, OV THERHAM 5639EE Job No. HD-521-018

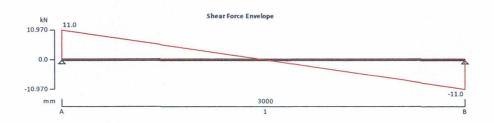
Calcs for: | VIRLIN | Start Page: PI-1 Rev:

Calcs by: 57 Calcs Date: Checked: Checked Date: Approved: Approved Date:

ww	w.huddsdesign.com	1 25/01/	241			
	PURLIN 11					
	MAX CLEAR STAN = 3000	mm				
	SUPPORTUNG ROOF LENGTH	4 = 0.5 (3.4 m) × 2 NO -	= 3.44		
	LOADS ON PURLIN PI					
	MOOF DEAD LOAD -	3.4m	X	1. 3 hWm2	= 4.5hN/m	
	ROOF IMPOSED LOAD =	3.4m	×	O.Bh.Winz	= 2.7hN/m	
	ADOPT 600 × 275 mm	DEEP TIMBER	((EE ()	41 C PI)		
	MIN GRADE (24)			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
	THE CHAIR CLY					
					1	7.0W
					N	PL= 7.0W = 4.1hr
					KL	L


Hudds Design Structural Engineering Consultants


Hudds Design 103 - 105 Bradford Rd Huddersfield HD1 6DZ


Project 69 Washington Rd, Goldthorpe, Rotherham S63 9EE					1-0118
Calcs for Purlin P1 (Timber)			Start page no./Re	evision - 1	
Calcs by JT	Calcs date 25/01/2021	Checked by JA	Checked date 25/01/2021	Approved by	Approved date

TIMBER BEAM ANALYSIS & DESIGN TO BS5268-2:2002

TEDDS calculation version 1.7.01

Applied loading

Beam loads

Dead self weight of beam \times 1 Dead full UDL 4.500 kN/m Imposed full UDL 2.700 kN/m

Load combinations

Load combination 1

Support A

Dead × 1.00

Imposed \times 1.00

Span 1

 $Dead \times 1.00$

Imposed \times 1.00

 $Dead \times 1.00$

Support B

 $Imposed \times 1.00 \\$

Analysis results

Design moment

M = 8.227 kNm

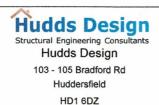
Design shear

F = 10.970 kN

Total load on beam

Reactions at support A

 $W_{tot} = 21.940 \text{ kN}$ $R_{A_{max}} = 10.970 \text{ kN}$


 $R_{A_{min}} = 10.970 \text{ kN}$

Unfactored dead load reaction at support A

R_{A_Dead} = **6.920** kN

Unfactored imposed load reaction at support A

R_{A_Imposed} = 4.050 kN

Project 69 Washii	ngton Rd, Goldth	Job no. HD-S2	21-0118		
Calcs for Purlin P1 (Timber)				Start page no./Revision P1 - 2	
Calcs by JT	Calcs date 25/01/2021	Checked by JA	Checked date 25/01/2021	Approved by	Approved date

Reactions at support B

 $R_{B_{max}} = 10.970 \text{ kN}$

 $R_{B_{min}} = 10.970 \text{ kN}$

Unfactored dead load reaction at support B

R_{B_Dead} = **6.920** kN

Unfactored imposed load reaction at support B

R_{B_imposed} = 4.050 kN

Timber section details

Breadth of section

b = 100 mm

Depth of section

h = 275 mm

Number of sections

N = 1

Breadth of beam

 $b_b = 100 \text{ mm}$

Timber strength class

C24

.

Member details

Service class of timber

1

Load duration

Medium term

Length of span

L_{s1} = 3000 mm

Length of bearing

L_b = 100 mm

Lateral support - cl.2.10.8

Permiss.depth-to-breadth ratio 4.00

Actual depth-to-breadth ratio 2.75

PASS - Lateral support is adequate

Check bearing stress

Permissible bearing stress

 $\sigma_{c_adm} = 3.000 \text{ N/mm}^2$

Applied bearing stress

 $\sigma_{c_a} = 1.097 \text{ N/mm}^2$

PASS - Applied compressive stress is less than permissible compressive stress at bearing

Bending parallel to grain

Permissible bending stress

 $\sigma_{m_adm} = 9.465 \text{ N/mm}^2$

Applied bending stress

 $\sigma_{m_a} = 6.528 \text{ N/mm}^2$

PASS - Applied bending stress is less than permissible bending stress

Shear parallel to grain

Permissible shear stress

 $\tau_{adm} = 0.888 \text{ N/mm}^2$

Applied shear stress

 $\tau_a = 0.598 \text{ N/mm}^2$

PASS - Applied shear stress is less than permissible shear stress

Deflection

Permissible deflection

 δ_{adm} = 9.000 mm

Total deflection

 $\delta_a = 6.979 \text{ mm}$

PASS - Total deflection is less than permissible deflection

Job No. HD-521-0118 Project: 69 WASHINGTON RD, ROTHERHAM S63 9EE Start HI-I

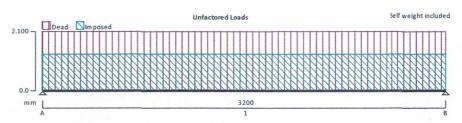
Calcs for: HIP RAFTER HI

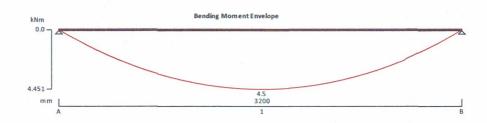
Rev:

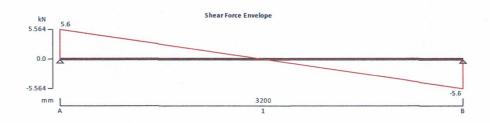
tructural Engineering Consultants www.huddsdesign.com	s by: J7 Calcs Dat	e: Check	ed: Checked Da	Approved:	Approved Dat
HIP RAFTER HI					
MAX CLEAN SIAN = 3200.	MM				
SUPPORTING ROOF LENGT	M = 16m				
LOADS ON HIP KAFTER	entral de la constante de la c				
ROOF DEAD LOAD =	1.6 m	*	1-3 KN/m²	= 2.16N/m	
ROOF IMPOSED LOAD =	1.6 m	×	0.8 W/m2	= 1.3hN/m	
ADOPT 75 x 250 mm	DEEP TIMBER	(SEE	(ALC HI)		
MIN GRADE C24					

Mpc = 3.5 hM

RLL- 2.16N


Structural Engineering Consultants **Hudds Design** 103 - 105 Bradford Rd Huddersfield


HD1 6DZ


Project 69 Was	21-0118				
Calcs for Hip Rafter H1 (Timber)				Start page no./Revision H1 - 1	
Calcs by	Calcs date 25/01/2021	Checked by JA	Checked date 25/01/2021	Approved by	Approved date

TIMBER BEAM ANALYSIS & DESIGN TO BS5268-2:2002

TEDDS calculation version 1.7.01

Applied loading

Beam loads

Dead self weight of beam × 1 Dead full UDL 2.100 kN/m Imposed full UDL 1.300 kN/m

Load combinations

Load combination 1

Support A

Dead × 1.00

 $lmposed \times 1.00 \\$

Span 1

Dead × 1.00

Support B

 $Imposed \times 1.00 \\$

Dead × 1.00

Imposed \times 1.00

Analysis results

Design moment

M = 4.451 kNm

Design shear

F = **5.564** kN

Total load on beam Reactions at support A $W_{tot} = 11.127 \text{ kN}$

 $R_{A_{max}} = 5.564 \text{ kN}$

 $R_{A_{min}} = 5.564 \text{ kN}$

Unfactored dead load reaction at support A Unfactored imposed load reaction at support A R_{A_Dead} = 3.484 kN

R_{A_Imposed} = 2.080 kN

Hudds Design
Structural Engineering Consultants
Hudds Design
103 - 105 Bradford Rd
Huddersfield

HD1 6DZ

Project Job no.						
69 Washington Rd, Goldthorpe, Rotherham S63 9EE HD-S21-0					21-0118	
Calcs for Start page no./Revision					Revision	
	Hip Rafter	H	11 - 2			
Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date	
JT	25/01/2021	JA	25/01/2021			

Reactions at support B

 $R_{B_{max}} = 5.564 \text{ kN}$

 $R_{B_{min}} = 5.564 \text{ kN}$

Unfactored dead load reaction at support B

R_{B Dead} = 3.484 kN

Unfactored imposed load reaction at support B

R_{B_imposed} = 2.080 kN

Timber section details

Breadth of section

b = 75 mm

Depth of section

h = 250 mm

Number of sections

N = 1

Breadth of beam

 $b_b = 75 \text{ mm}$

Timber strength class

C24

Member details

Service class of timber

1

Load duration

Medium term

Length of span

L_{s1} = **3200** mm

Length of bearing

L_b = 100 mm

Lateral support - cl.2.10.8

Permiss.depth-to-breadth ratio 4.00

Actual depth-to-breadth ratio 3.33

PASS - Lateral support is adequate

Check bearing stress

Permissible bearing stress

 $\sigma_{c_adm} = 3.000 \text{ N/mm}^2$

Applied bearing stress

 $\sigma_{ca} = 0.742 \text{ N/mm}^2$

PASS - Applied compressive stress is less than permissible compressive stress at bearing

Bending parallel to grain

Permissible bending stress

 $\sigma_{m_adm} = 9.565 \text{ N/mm}^2$

Applied bending stress

 $\sigma_{m_a} = 5.697 \text{ N/mm}^2$

PASS - Applied bending stress is less than permissible bending stress

Shear parallel to grain

Permissible shear stress

 $\tau_{adm} = 0.888 \text{ N/mm}^2$

Applied shear stress

 $\tau_a = 0.445 \text{ N/mm}^2$

PASS - Applied shear stress is less than permissible shear stress

Deflection

Permissible deflection

 $\delta_{adm} = 9.600 \text{ mm}$

Total deflection

 $\delta_a = 7.385 \text{ mm}$

PASS - Total deflection is less than permissible deflection

Structural Engineering Consultants www.huddsdesign.com

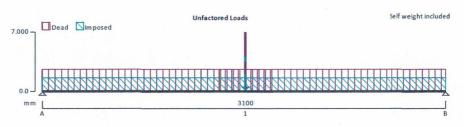
Project: 69 WAS MINGTON ND, NOTHERHAM 563 (EE Job No. HD-521-0118)

Calcs for: BEAM BI

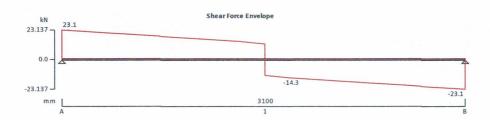
Calcs by: 57 Calcs Date: 25/01/2021 Checked: Checked Date: Approved: Approved Date:

	om L						
BEAM OL							
MAX CLEAR .	SPAN = 3100mm						
+	PUNLIN PI RE HIP RAFTEN	ACTION HI REACTU) Mc)			
LOADS ON BE	EAM BI						
PILLAR DEAD	LOAD =	1-3m	×	2.0W/m2	= 2.6hM/m		
the first of the control of the cont		U			= 7.0 W		
					= 3.5hN = 2.1hN		
ROOF IMPOSE	OAD =	2.0m 2.0m		1.3hN/m² 0.8W/m²	= 1.6 W/m		
ADOM 152	× 152×23 U	IC (SEE CALC	B()				
PADSTONES							
N = 23.1 W							
0c= 23.1×1000) = 1.16 N/mm²	< 1.2 N/mm2	SATUFA	crops			
ADOPT 20	0x 60x 215	mm DEEP (DNCKETE	rads tones			
						Rot"	N 1.03
	MAX CLEAR SUPPORTING LOADS ON BE PURLIN PL DE PURLIN PL IM HIP RAFTER HIP RAFTER HIP RAFTER HIP RAFTER HIP RAFTER ADOPT 152 PADS TONES N = 23.1 km Oc= 23.1 x 1000 2000 x 1000	MAX CLEAR SPAN = 3100mm SUPPORTING PILLAR MEIN FRUILIN PI RE HIP RAFTER PURLIN PI DEAD REACTION PURLIN PI IMPOSED REACTION HIP RAFTER HI DEAD REACTION HIP RAFTER HI DEAD REACTION ROOF IMPOSED LOAD = ROOF IMPOSED LOAD = ROOF IMPOSED LOAD = ADOPT 152×152×23 (PADS TONES N = 23.1 km Oc= 23.1 x1000 = 1.1616mm² 200 x1000 = 1.1616mm²	MAX CLEAR SPAN = 3100mm SUPPORTING PILLAR MEIGHT = 1.3m + PURLIN PI REACTION + HIP RAFTER MI REACTION + KOOF LENGTH = 2.0m LOADS ON BEAM BI PILLAR DEAD LOAD = 1.3m PURLIN PI DEAD REACTION HIP RAFTER HI DEAD REACTION HIP RAFTER HI IMPOSED REACTION KOOF DEAD LOAD = 2.0m ROOF IMPOSED LOAD = 2.0m ADOPT 152×152×23 UC (SEE CALC PADS TONES R = 23.1 kN Oc= 23.1 ×1000 = 1.6 Mmm² < 1.2 N/mm² 2000 × 1000 = 1.6 Mmm² < 1.2 N/mm²	MAX CLEAR SPAN = 3100mm SUPPORTING PILLAR MEIGHT = 1.3m FRUKLIN PI REACTION HIP RAFTER HI REACTION HOOF LENGTH = 2.0m LOADS ON BEAM BI PILLAR DEAD LOAD = 1.3m PURLIN PI DEAD REACTION HIP RAFTER HI DEAD REACTION HIP RAFTER HI DEAD REACTION HIP RAFTER HI IMPOSED REACTION ROOF IMPOSED LOAD = 2.0m ROOF IMPOSED LOAD = 2.0m ADOPT 152×152×23 UC (SEE CALC BI) PADS TONES N = 23.1 NN Oc= 23.1 ×1000 = 1.16Nmm² < 1.2 N/mm² SATUFA 200 ×1000 = 1.16Nmm² < 1.2 N/mm² SATUFA	HAX CLEAR SPAN = 3100mm SUPPORTING PILLAR MEIGHT = 1.3 m + PURLIN PI REACTION + ROOF LENGTH = 2.0m CEXISTING LOADS ON BEAM BI PILLAR DEAD LOAD = 1-3 m PURLIN PI DEAD REACTION HIP RAFTER HI DEAD REACTION HIP RAFTER HI IMPOSED REACTION HIP RAFTER HI IMPOSED REACTION ROOF DEAD LOAD = 2.0m ROOF JMPOSED LOAD = 2.0m ADOM 152×152×23 UC (SEE CALC BI) PADS TONES N = 23.1 km Oc= 23.1 x1000 = 1.1 km/m² < 1.2 km/m² SATISFACTORY	MAX CLEAR SPAN = 3100 mm SUPPORTING PILLAR MEIGHT = 1.3 m FRURLIN PI REACTION HIP RAFTER MI REACTION CEXISTING ROOF) LOADS ON BEAM BI PILLAR DEAD LOAD = 1-3 m PURLIN PI IMPOSED REACTION HIP RAFTER HI DEAD REACTION HIP RAFTER HI IMPOSED REACTION HIP RAFTER HI IMPOSED REACTION ROOF IMPOSED LOAD = 2.0 m ROOF IMPOSED LOAD = 2.0 m ADOPT 152×152×23 UC (SEE CALC BI) PADSTONES N = 23.1 km Oc= 23.1 x1000 = 1.16 m/m² < 1.2 m/m² SATUFACTORY 2002 x1000 = 1.16 m/m² < 1.2 m/m² SATUFACTORY	HAX CLEAR SPAN = 3100mm SUPPORTING PILLAR MEIGHT = 1.3 m + PURLIN PI REACTION + ROOF LENGTH = 2.0 m (EXISTING ROOF) LOADS ON BEAM BI PILLAR DEAD LOAD = 1.3 vn × 2.0 km/m2 = 2.6 km/m PURLIN PI DEAD REACTION FURLIN PI IMPOSED REACTION HIP RAFTER HI DEAD REACTION HIP RAFTER HI IMPOSED REACTION ROOF DEAD LOAD = 2.0 m × 1.7 km/m2 = 1.6 km/m ROOF IMPOSED LOAD = 2.0 m × 0.8 km/m2 = 1.6 km/m ADOPT 152×152×23 UC (SEE CALC BI) PADSTONES N = 2.1 km Oc= 23 x1000 = 1.16 km/m2 < 1.2 km/m2 SATUSFACTORY 2000 x 1000 x

Hudds Design Structural Engineering Consultants


Hudds Design 103 - 105 Bradford Rd Huddersfield HD1 6DZ

Project 69 Washin	igton Rd, Goldth	Job no. HD-S2	1-0118		
Calcs for Beam B1			Start page no./Re		
Calcs by JT	Calcs date 25/01/2021	Checked by JA	Checked date 25/01/2021	Approved by	Approved date


STEEL BEAM ANALYSIS & DESIGN (BS5950)

In accordance with BS5950-1:2000 incorporating Corrigendum No.1

TEDDS calculation version 3.0.07

Support conditions

Support A

Support B

Applied loading

Beam loads

Vertically restrained

Rotationally free

Vertically restrained

Rotationally free

Dead self weight of beam \times 1

Dead partial UDL 2.6 kN/m from 1350 mm to 1750 mm

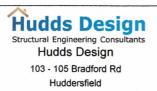
Dead point load 7 kN at 1550 mm

Imposed point load 4.1 kN at 1550 mm

Dead point load 3.5 kN at 1550 mm

Imposed point load 2.1 kN at 1550 mm

Dead full UDL 2.6 kN/m Imposed full UDL 1.6 kN/m


Load combinations

Load combination 1

Support A

Dead × 1.40

Imposed \times 1.60

HD1 6DZ

Check vertical deflection - Section 2.5.2 Consider deflection due to imposed loads

 δ_{lim} = 8.611 mm

Limiting deflection

Project	shington Dd. Coldt	Job no. HD-S21-0118			
os vva	shington Rd, Goldt	חט-8	21-0110		
Calcs for Start page no./Revision					
	Bea	m B1		В	1 - 2
Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date
JT	25/01/2021	JA	25/01/2021		

 δ = 2.253 mm

PASS - Maximum deflection does not exceed deflection limit

				L		
				Dead ×	1.40 ed × 1.60	
		Support B		Dead ×		
		Support D				
				impose	ed × 1.60	
Analysis results						
Maximum moment		$M_{max} = 28$		$M_{min} = 0$		=
Maximum shear		$V_{max} = 23.$	1 kN	$V_{min} = -$	-23.1 kN	
Deflection		$\delta_{\text{max}} = 2.3$	mm	$\delta_{min} = 0$	mm	
Maximum reaction at support A	4	$R_{A_{max}} = 23$	3.1 kN	R _{A_min} =	= 23.1 kN	
Unfactored dead load reaction	at support A	R _{A_Dead} = 1	0.1 kN			× .
Unfactored imposed load react	tion at support A	RA_Imposed =	5.6 kN			
Maximum reaction at support E	3	$R_{B_{max}} = 2$	3.1 kN	R _{B_min} =	= 23.1 kN	
Unfactored dead load reaction	at support B	R _{B_Dead} = 1	0.1 kN			
Unfactored imposed load react	tion at support B	R _{B_Imposed} =	5.6 kN			
Section details						
Section type	UC 152x152x23	(BS4-1)	Steel grade		S275	
Classification of cross section	ons - Section 3.5					
Tensile strain coefficient	ε = 1.00		Section classific	cation	Semi-compac	t
Shear capacity - Section 4.2.	3					
Design shear force	F _v = 23.1 kN		Design shear re	sistance	P _v = 145.8 kN	
		PAS	SS - Design shea	ar resistance e	exceeds design	shear force
Moment capacity - Section 4	.2.5					
Design bending moment	M = 28 kNm		Moment capacit	y low shear	Mc = 48.5 kNm	
Buckling resistance moment	- Section 4.3.6.4					
Buckling resistance moment	M _b = 35.8 kNm		$M_b / m_{LT} = 41.1$	kNm		
	F	ASS - Buckl	ing resistance m	noment exceed	ds design bend	ing moment

Maximum deflection

Structural Engineering Consultants www.huddsdesign.com

69 WASHINGTON RD, POTHERHAM SG3 GEE Project:

Calcs for: BEAM B2

Page:

Start B2-1

Job No. HD-521-0118

Calcs by: TT Calcs Date: Checked:

Checked Date:

Approved: Approved Date:

BEA	M	B2	= >	2 NO.	BE	AMS
- processor and invasor	GOVERNMENT OF THE	CANADA SERVI			-	

MAX CLEAR SPAN = 5000mm

CPARTIAL SUPPORTING WALL HEIGHT = 2.5m (PARJUAL)

+ ROOF LENGTH = 2.0m (INNER) & 0.5(3.0m)=1.5m (OUTER) } ON 3000-5(00m)

+ FLOOR LENGTH = 0.5(20m) (MNER) & 0.5(1.8m) (OUTER)

+ BEAM BI REACTION @ 3000mm ALON SPAN

LOADS ON BEAM BZ (INNER)

WALL				2-5m	X	20hN/me	I	5.0hN/m7. 7.6hN/	'By
ROOF	DEAD	LOAD	=	20m	λ	1-36N/m2	=	2.66N/n)	=

ROOF IMPOSED LOAD = 0.8 W/m2 = 1.6 W/m 2.0m

1-54N/m FLOOR DEAD LOAD = 1-5m 1.04N/m2 FLOOR IMPOSED WAD = 1.5 m 1.5 W/m2 2-36N/m

BEAM BY DEAD REACTION BEAM BY IMPOSED REACTION 10.14 5.6 WN

LOADS ON BEAM BZ COUTER)

WALL	DEAD	LOAD	=	2.5 m	χ	206N/m2	= 5.0W/m7 - 7.0W/m
ROOF	DEAD	LOAD	2	1-5m	X	1-3hN/m2	= 2.06Nm}
RODE	THIN	ED Las	0 -	15.	x	O 81.1/1.2	= 12/4//09

KOOF IMPUSED LOAD = · OMA) WE 0.9 W/m FLOOR DEAD LOAD = 0.9m 1.06N/m2 FLOOR IMPUSED LOAD = 0.9m 1-4hN/m 1.5 hN/m2

ADOPT 2NO. 254 × 146 × 37 UB'S (SEE CALC B2)

PADSTONES

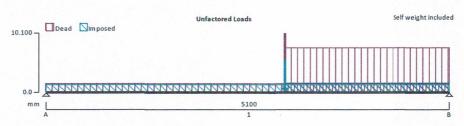
R= 47.6 WN + 29.8 WN = 77.4 WN

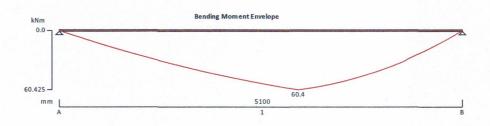
Oc= 77.4× (000) = 0.9 N/mm2 < 1-2 N/mm2 SATUFACTORY 300 x 300

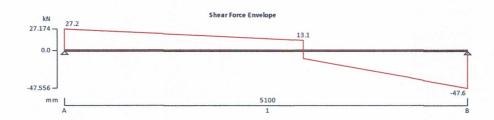
ADOPT 200×300 × 215mm DEEP CONCRETE PADSTONES

Hudds Design Structural Engineering Consultants

Hudds Design 103 - 105 Bradford Rd Huddersfield


HD1 6DZ


Project 69 Was	shington Rd, Goldt	horpe, Rotherl	nam S63 9EE	Job no. HD-S	21-0118
Calcs for	Beam B	32 (Inner)		Start page no./	Revision 32 - 1
Calcs by	Calcs date 25/01/2021	Checked by JA	Checked date 25/01/2021	Approved by	Approved date


STEEL BEAM ANALYSIS & DESIGN (BS5950)

In accordance with BS5950-1:2000 incorporating Corrigendum No.1

TEDDS calculation version 3.0.07

Support conditions

Support A

Support B

Applied loading

Beam loads

Vertically restrained

Rotationally free

Vertically restrained

Rotationally free

Dead self weight of beam × 1

Dead partial UDL 7.6 kN/m from 3000 mm to 5100 mm

Imposed partial UDL 1.6 kN/m from 3000 mm to 5100 mm

Dead full UDL 1.5 kN/m Imposed full UDL 1.3 kN/m

Dead point load 10.1 kN at 3000 mm

Imposed point load 5.6 kN at 3000 mm

Load combinations

Load combination 1

Support A

Dead × 1.40

Imposed × 1.60

Dead × 1.40

HD1 6DZ

Project 69 Was	shington Rd, Goldt	horpe, Rotherl	nam S63 9EE	Job no. HD-S	21-0118
Calcs for	Beam E	32 (Inner)		Start page no./l	Revision 2 - 2
Calcs by	Calcs date 25/01/2021	Checked by JA	Checked date 25/01/2021	Approved by	Approved date

Imposed × 1.60

Support B Dead × 1.40

Imposed \times 1.60

Analysis results

Maximum reaction at support A $R_{A_max} = 27.2 \text{ kN}$ $R_{A_min} = 27.2 \text{ kN}$

Unfactored dead load reaction at support A $R_{A_Dead} = 12.2 \text{ kN}$ Unfactored imposed load reaction at support A $R_{A_imposed} = 6.3 \text{ kN}$

Maximum reaction at support B $R_{B_{max}} = 47.6 \text{ kN}$ $R_{B_{min}} = 47.6 \text{ kN}$

Unfactored dead load reaction at support B $R_{B_Dead} = 23.4 \text{ kN}$ Unfactored imposed load reaction at support B $R_{B_Imposed} = 9.3 \text{ kN}$

Section details

Section type UB 254x146x37 (BS4-1) Steel grade S275

Classification of cross sections - Section 3.5

Tensile strain coefficient $\varepsilon = 1.00$ Section classification Plastic

Shear capacity - Section 4.2.3

Design shear force $F_v = 47.6 \text{ kN}$ Design shear resistance $P_v = 266.1 \text{ kN}$

PASS - Design shear resistance exceeds design shear force

Moment capacity - Section 4.2.5

Design bending moment M = 60.4 kNm Moment capacity low shear M_c = 132.9 kNm

Buckling resistance moment - Section 4.3.6.4

Buckling resistance moment $M_b = 54.6 \text{ kNm}$ $M_b / m_{LT} = 65.1 \text{ kNm}$

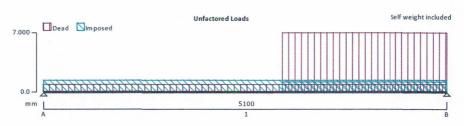
PASS - Buckling resistance moment exceeds design bending moment

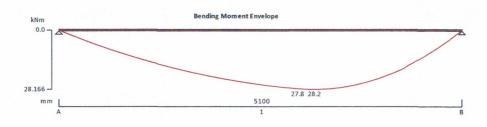
Check vertical deflection - Section 2.5.2

Consider deflection due to imposed loads

Limiting deflection δ_{lim} = 14.167 mm Maximum deflection δ = 2.767 mm

PASS - Maximum deflection does not exceed deflection limit


Hudds Design 103 - 105 Bradford Rd Huddersfield HD1 6DZ


Project 69 Was	shington Rd, Goldth	Job no. HD-S21-0118			
Calcs for Beam B2 (Outer)			Start page no./Revision B2 - 1		
Calcs by JT	Calcs date 25/01/2021	Checked by JA	Checked date 25/01/2021	Approved by	Approved date

STEEL BEAM ANALYSIS & DESIGN (BS5950)

In accordance with BS5950-1:2000 incorporating Corrigendum No.1

TEDDS calculation version 3.0.07

Vertically restrained Rotationally free

Vertically restrained Rotationally free

Support conditions

Support A

Support B

• •

Applied loading

Beam loads

Dead self weight of beam x 1

Dead partial UDL 7 kN/m from 3000 mm to 5100 mm Imposed partial UDL 1.2 kN/m from 3000 mm to 5100 mm

Dead full UDL 0.9 kN/m Imposed full UDL 1.4 kN/m

Load combinations

Load combination 1

Support A

Dead × 1.40

Imposed \times 1.60

 $\text{Dead} \times 1.40$

Imposed × 1.60

Support B

 $\text{Dead} \times 1.40$

103 - 105 Bradford Rd Huddersfield HD1 6DZ

Project 69 Washington Rd, Goldthorpe, Rotherham S63 9EE					21-0118
Calcs for Beam B2 (Outer)			Start page no./Revision B2 - 2		
Calcs by JT	Calcs date 25/01/2021	Checked by JA	Checked date 25/01/2021	Approved by	Approved date

Imposed × 1.60

 $M_{min} = 0 kNm$

 δ_{min} = 0 mm

 $V_{min} = -29.8 \text{ kN}$

R_{A_min} = 15.3 kN

 $R_{B_{min}} = 29.8 \text{ kN}$

Analysis results

Maximum moment
Maximum shear

Maximum shear Deflection

Maximum reaction at support A
Unfactored dead load reaction at support A

Unfactored imposed load reaction at support A Maximum reaction at support B

Unfactored dead load reaction at support B

Unfactored imposed load reaction at support B

Classification of cross sections - Section 3.5

Section details

Section type

UB 254x146x37 (BS4-1)

7 (BS4-1) Steel grade

 $M_{max} = 28.2 \text{ kNm}$

 $V_{max} = 15.3 \text{ kN}$

 δ_{max} = 1.4 mm

 $R_{A_{max}} = 15.3 \text{ kN}$

R_{A_Dead} = 6.2 kN

R_A Imposed = 4.1 kN

 $R_{B_{max}} = 29.8 \text{ kN}$

R_{B_Dead} = 14.9 kN

R_{B_Imposed} = 5.6 kN

Section classification

Plastic

S275

Shear capacity - Section 4.2.3

Design shear force

 $F_v = 29.8 \text{ kN}$

 $\epsilon = 1.00$

Design shear resistance

 $P_v = 266.1 \text{ kN}$

PASS - Design shear resistance exceeds design shear force

Moment capacity - Section 4.2.5

Design bending moment

Tensile strain coefficient

M = 28.2 kNm

Moment capacity low shear

 $M_c = 132.9 \text{ kNm}$

Buckling resistance moment - Section 4.3.6.4

Buckling resistance moment

 $M_b = 54.6 \text{ kNm}$

 $M_b / m_{LT} = 62 \text{ kNm}$

PASS - Buckling resistance moment exceeds design bending moment

Check vertical deflection - Section 2.5.2

Consider deflection due to imposed loads

Limiting deflection

 δ_{lim} = 14.167 mm

Maximum deflection

 δ = 1.424 mm

PASS - Maximum deflection does not exceed deflection limit

www.huddsdesign.com

Calcs by:

Calcs Date:

Project: 69 WASHINGTON NO, NOTHERHAM 563 9PE Job No. 40-54-018 Start Calcs for: BEAM B3 Rev: Page:

Checked Date:

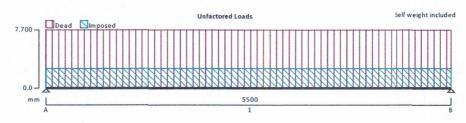
Approved:

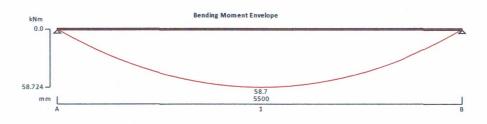
Approved Date:

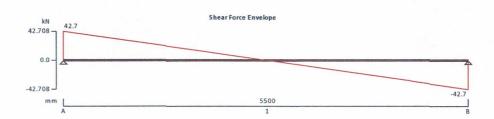
Checked:

BEAM B3 => 2NO. BEAR					
MAX CLEAR SPAN = 550	Omm				
SUPPORTUNG WALL HELD + ROOF LENG + FLOOR LENG	TH = 0.5(3	.0m) = (1.3 (m) = 0.9	ton ((NNER)	X 0.5(2.0m) = 1.0m	LOVER
LOADS ON BEAM B3 (IN	NER)				
WALL DEAD LOAD =	2-4m	7	1.0hN/m2	= 4.8 Mm 7	
ROOF DEAD LOAD =	1-5 m	X	1-36N/m2	= 2.0Wm (= 7.7)	t/N/m
FLOOR DEAD LOAD =	0.9m	K	1.00N/m2	= DANNIN ===	
ROOF IMPOSED LOAD=	1-5m	*	0.86N/m2	= 12hNm 3, 26kl	V/m
FLOOR IMPOSED LOAD=	0.9m	X	1.5 W/m2	= 1.4Wm } 26k1	
LOADS ON BEAM B? (O)	UZERI				
WALL DEAD LOAD =	0.4.	X	2 0/10// 2	= 4.9 N/m > (-1)	N/s
ROOF DEAD LOAD =	1.0m	X	1-3 hN/me	= 4.8 Mm } = 6-1,	UV704
ROOF IMPOSED LOAD:	1-0m	*	0.8hN/m2	= 0.3W/m	
ADOPT 2110. 254×11	16×43 U36	(SEC)	CAI (B7)		
7.001		= 300	(5)		
PADSTONES					
N= 66.8 KD	4,304				
A. (1.0 m)	(N)	EW BUILD)	6.4.00	lest al W	
00 66.3 × 1000 , 1.6N	1mm2 < 2.4	N/mm2	SAUST	ACUSIN	
AUDIT 400×100×2	15mm DEE	P CONCR	ele labs co	NES	
				ROL= 13.2 &	88 1
				1 (1)	0 () = 2

Structural Engineering Consultants
Hudds Design
103 - 105 Bradford Rd
Huddersfield


HD1 6DZ


Project Job no. 69 Washington Rd, Goldthorpe, Rotherham S63 9EE					1-0118
Calcs for Beam B3 (Inner)			Start page no./Re	evision - 1	
Calcs by Calcs date Checked by Checked date JT 25/01/2021 JA 25/01/2021				Approved by	Approved date


STEEL BEAM ANALYSIS & DESIGN (BS5950)

In accordance with BS5950-1:2000 incorporating Corrigendum No.1

TEDDS calculation version 3.0.07

Support conditions

Support A Vertically restrained

Rotationally free Vertically restrained

Rotationally free

Applied loading

Support B

Beam loads Dead self weight of beam \times 1

Dead full UDL 7.7 kN/m Imposed full UDL 2.6 kN/m

Load combinations

Load combination 1 Support A Dead × 1.40

Imposed × 1.60

Dead × 1.40

Imposed × 1.60

Support B Dead × 1.40

 $Imposed \times 1.60 \\$

HD1 6DZ

Project 69 Wa	shington Rd, Goldt	horpe, Rotherl	nam S63 9EE	Job no. HD-S	21-0118	
Calcs for	Calcs for Beam B3 (Inner)				Start page no./Revision B3 - 2	
Calcs by	Calcs date 25/01/2021	Checked by JA	Checked date 25/01/2021	Approved by	Approved date	

-	3 1 2 1		2.00
Ana	voic	resu	140
MIIA	17212	resu	ILS

Maximum moment $M_{max} = 58.7 \text{ kNm}$ Maximum shear $V_{max} = 42.7 \text{ kN}$

Deflection $\delta_{\text{max}} = 2.3 \text{ mm}$ $\delta_{\text{min}} = 0 \text{ mm}$ Maximum reaction at support A $R_{A_\text{max}} = 42.7 \text{ kN}$ $R_{A_\text{min}} = 42.7 \text{ kN}$

Maximum reaction at support A $R_{A_max} = 42.7 \text{ kN}$ Unfactored dead load reaction at support A $R_{A_Dead} = 22.3 \text{ kN}$

Unfactored imposed load reaction at support A $R_{A_Imposed} = 7.2 \text{ kN}$ Maximum reaction at support B $R_{B_max} = 42.7 \text{ kN}$ $R_{B_min} = 42.7 \text{ kN}$

Unfactored dead load reaction at support B R_{B_Dead} = 22.3 kN Unfactored imposed load reaction at support B $R_{B_Imposed}$ = 7.2 kN

Section details

Section type UB 254x146x43 (BS4-1) Steel grade S275

Classification of cross sections - Section 3.5

Tensile strain coefficient $\varepsilon = 1.00$ Section classification Plastic

Shear capacity - Section 4.2.3

Design shear force $F_v = 42.7 \text{ kN}$ Design shear resistance $P_v = 308.4 \text{ kN}$

PASS - Design shear resistance exceeds design shear force

 $M_{min} = 0 \text{ kNm}$

 $V_{min} = -42.7 \text{ kN}$

Moment capacity - Section 4.2.5

Design bending moment M = 58.7 kNm Moment capacity low shear M_c = 155.7 kNm

Buckling resistance moment - Section 4.3.6.4

Buckling resistance moment $M_b = 65.1 \text{ kNm}$ $M_b / m_{LT} = 70.4 \text{ kNm}$

PASS - Buckling resistance moment exceeds design bending moment

Check vertical deflection - Section 2.5.2

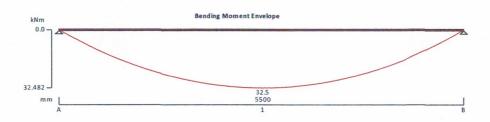
Consider deflection due to imposed loads

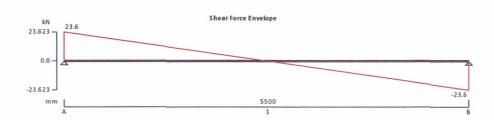
Limiting deflection $\delta_{lim} = 15.278 \text{ mm}$ Maximum deflection $\delta = 2.309 \text{ mm}$

PASS - Maximum deflection does not exceed deflection limit

Structural Engineering Consultants **Hudds Design** 103 - 105 Bradford Rd Huddersfield


HD1 6DZ


Project Job no. 69 Washington Rd, Goldthorpe, Rotherham S63 9EE HD-S21-0118					1-0118
Calcs for Beam B3 (Outer)			Start page no./Revision B3 - 1		
Calcs by JT	Calcs date 25/01/2021	Checked by JA	Checked date 25/01/2021	Approved by	Approved date


STEEL BEAM ANALYSIS & DESIGN (BS5950)

In accordance with BS5950-1:2000 incorporating Corrigendum No.1

TEDDS calculation version 3.0.07

Support conditions

Support A

Support B

Applied loading

Beam loads

Load combinations

Load combination 1

Vertically restrained

Rotationally free

Vertically restrained

Rotationally free

Dead self weight of beam × 1

Dead full UDL 4.8 kN/m

Imposed full UDL 0.8 kN/m

Support A

 $\text{Dead} \times 1.40$

Imposed × 1.60

 $\text{Dead} \times 1.40$

Imposed × 1.60

Support B

Dead × 1.40

Imposed \times 1.60

HD1 6DZ

Project				Job no.	
69 Washington Rd, Goldthorpe, Rotherham S63 9EE				HD-S	21-0118
Calcs for				Start page no./Revision	
Beam B3 (Outer)				В	3 - 2
Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date
JT	25/01/2021	JA	25/01/2021		

MIIA	14515	results
	,,	

Maximum reaction at support A $R_{A_max} = 23.6 \text{ kN}$ $R_{A_min} = 23.6 \text{ kN}$

Unfactored dead load reaction at support A $R_{A_Dead} = 14.4 \text{ kN}$ Unfactored imposed load reaction at support A $R_{A_Imposed} = 2.2 \text{ kN}$

Maximum reaction at support B $R_{B_max} = 23.6 \text{ kN}$ $R_{B_min} = 23.6 \text{ kN}$

Unfactored dead load reaction at support B $R_{B_Dead} = 14.4 \text{ kN}$ Unfactored imposed load reaction at support B $R_{B_Imposed} = 2.2 \text{ kN}$

Section details

Section type UB 254x146x43 (BS4-1) Steel grade S275

Classification of cross sections - Section 3.5

Tensile strain coefficient $\varepsilon = 1.00$ Section classification Plastic

Shear capacity - Section 4.2.3

Design shear force $F_v = 23.6 \text{ kN}$ Design shear resistance $P_v = 308.4 \text{ kN}$

PASS - Design shear resistance exceeds design shear force

Moment capacity - Section 4.2.5

Design bending moment M = 32.5 kNm Moment capacity low shear M_c = 155.7 kNm

Buckling resistance moment - Section 4.3.6.4

Buckling resistance moment $M_b = 65.1 \text{ kNm}$ $M_b / m_{LT} = 70.4 \text{ kNm}$

PASS - Buckling resistance moment exceeds design bending moment

Check vertical deflection - Section 2.5.2

Consider deflection due to imposed loads

Limiting deflection δ_{lim} = 15.278 mm Maximum deflection δ = 0.711 mm

PASS - Maximum deflection does not exceed deflection limit

Structural Engineering Consultants www.huddsdesign.com

69 WASHINGTON RD ROTHERHAM SES PEE JOD NO. HD-521-0118 Project:

Start Page: 64 -1 Calcs for: BFAM B4

Calcs Date: 25/0 / 2021 Calcs by: 11 Checked: Checked Date: Approved: Approved Date:

BEAM BA MAX CLEAR SPAN = 1200 mm SUPPORTING WALL HEIGHT = 2.70 + BEAM B3 REACTION @ MID-SPAN

LOADS ON BEAM B4

2.0hN/m2 = 5.4hN/m WALL DE40 LOAD = 2.7m

= 36.7KN BEAM B3 DEAD REACTION BEAM B3 IMPOSED REACTION

ADOPT 152 x 89 x 16 UB (SEE CALL B4)

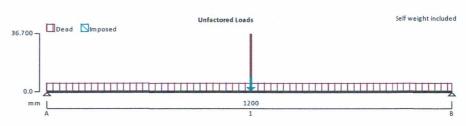
PARITONES

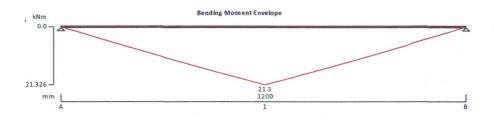
R= 37-9 hN

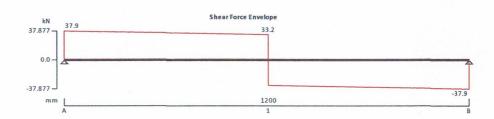
Oc: 37-9×1000 = 1-4N/mm2 < 2.4N/mm2 SAUSFACTORY

ADOPT LOOK WOOK LISMON DEEP CONCRETE PADS TONES

Structural Engineering Consultants Hudds Design 103 - 105 Bradford Rd Huddersfield


HD1 6DZ


Project 69 Washington Rd, Goldthorpe, Rotherham S63 9EE				Job no. HD-S21-0118	
Calcs for Beam B4				Start page no./Revision B4 - 1	
Calcs by JT	Calcs date 25/01/2021	Checked by JA	Checked date 25/01/2021	Approved by	Approved date


STEEL BEAM ANALYSIS & DESIGN (BS5950)

In accordance with BS5950-1:2000 incorporating Corrigendum No.1

TEDDS calculation version 3.0.07

Support conditions

Support A

Support B

Applied loading

Beam loads

Load combinations
Load combination 1

Vertically restrained

Rotationally free

Vertically restrained

Rotationally free

Dead self weight of beam \times 1

Dead full UDL 5.4 kN/m

Dead point load 36.7 kN at 600 mm Imposed point load 9.4 kN at 600 mm

Support A

 $Dead \times 1.40$

Imposed × 1.60

Dead × 1.40

 $Imposed \times 1.60 \\$

Support B Dead × 1.40

 $\text{Imposed} \times 1.60$

103 - 105 Bradford Rd Huddersfield HD1 6DZ

Project 69 Washington Rd, Goldthorpe, Rotherham S63 9EE Calcs for Beam B4				Job no. HD-S21-0118 Start page no./Revision B4 - 2	

Ana	Wele	raculte	
mila	14212	results	

Maximum moment

Maximum shear

Deflection Maximum reaction at support A

Unfactored dead load reaction at support A Unfactored imposed load reaction at support A

Maximum reaction at support B

Unfactored dead load reaction at support B Unfactored imposed load reaction at support B

Section details

Section type

UB 152x89x16 (BS4-1)

Steel grade

 $M_{max} = 21.3 \text{ kNm}$

 $V_{max} = 37.9 \text{ kN}$

 $\delta_{\text{max}} = 0.2 \text{ mm}$

 $R_{A_{max}} = 37.9 \text{ kN}$

R_{A_Dead} = 21.7 kN R_{A_Imposed} = 4.7 kN

 $R_{B_{max}} = 37.9 \text{ kN}$

R_{B Dead} = 21.7 kN

R_{B_imposed} = 4.7 kN

S275

 $M_{min} = 0 \text{ kNm}$

 $\delta_{min} = 0 \text{ mm}$

 $V_{min} = -37.9 \text{ kN}$

 $R_{A_min} = 37.9 \text{ kN}$

 $R_{B_min} = 37.9 \text{ kN}$

Classification of cross sections - Section 3.5

Tensile strain coefficient

 $\epsilon = 1.00$

Section classification

Plastic

Shear capacity - Section 4.2.3

Design shear force

 $F_{v} = 37.9 \text{ kN}$

Design shear resistance

 $P_v = 113.2 \text{ kN}$

PASS - Design shear resistance exceeds design shear force

Moment capacity - Section 4.2.5

Design bending moment

M = 21.3 kNm

 $M_b = 27.5 \text{ kNm}$

Moment capacity low shear

 $M_c = 33.9 \text{ kNm}$

Buckling resistance moment - Section 4.3.6.4

Buckling resistance moment

 $M_b / m_{LT} = 32.2 \text{ kNm}$

PASS - Buckling resistance moment exceeds design bending moment

Check vertical deflection - Section 2.5.2

Consider deflection due to imposed loads

Limiting deflection

 δ_{lim} = 3.333 mm

Maximum deflection

 $\delta = 0.198 \text{ mm}$

PASS - Maximum deflection does not exceed deflection limit